CRAIG, KELLER, AND HAMMEL

FIG. 2. Ratio of observed asymptotic $(T_1 = T_{\lambda})$ power input to that calculated on the basis of several theories as a function of T_0 ; $d = 3.36 \mu$. Curve a-m = 3, $\mathbf{v}_e = 0$, A as given by Vinen (4); curve b-m = 3, \mathbf{v}_e as given by Dash (16), A as given by Vinen; curve e-m = 3, $\mathbf{v}_e = 0$, A = 50 cm-sec/gm; curve d-m = 4, $\mathbf{v}_e = 0$, A = 50 cm-sec/gm.

to determine a few selected values of A in the region $1.7^{\circ}-2.0^{\circ}$ K for large \bar{q} where neither of these objections applies. We have not been able to solve the nonlinear integral equation (26) directly for \bar{q} , but instead we have used a variance method pointed out to use by Dr. R. B. Lazarus.

We consider

$$\bar{\mathbf{q}}(\lambda, T) = \frac{d^2}{L} \int_{T_0}^T \frac{\Lambda}{1+\lambda\delta} d\tau$$
(44)

where $\delta \equiv \alpha d^2 \bar{\mathbf{q}}^2$, $\lambda \equiv \alpha'/\alpha$ is a factor relating α (determined from Vinen's A(T)) and α' (the new value of α to be determined from the present experiments); τ is a dummy variable. Holding $\bar{\mathbf{q}}$ fixed and varying λ we obtain

$$0 = \frac{d^2}{L} \left[\frac{\Lambda}{1+\lambda\delta} \left(\frac{\partial T}{\partial \lambda} \right)_{\tilde{q}} - \int_{T_0}^T \frac{\Lambda\delta}{(1+\lambda\delta)^2} d\tau \right];$$
(45)

and holding λ fixed and varying $\bar{\mathbf{q}}$

$$\left(\frac{\partial \tilde{\mathbf{q}}}{\partial T}\right)_{\lambda} = \frac{d^2}{L} \left[\frac{\Lambda}{1+\lambda\delta} - \int_{T_0}^T \frac{2\lambda\Lambda\delta}{\tilde{\mathbf{q}}(1+\lambda\delta)^2} d\tau \left(\frac{\partial \tilde{\mathbf{q}}}{\partial T}\right)_{\lambda}\right].$$
(46)

Combining (45) and (46) we find

$$\left(\frac{\partial T}{\partial \lambda}\right)_{\bar{\mathbf{q}}} = \frac{\bar{\mathbf{q}}}{2\lambda} \left[\left(\frac{\partial T}{\partial \bar{\mathbf{q}}}\right)_{\lambda} - \frac{(1+\lambda\delta)L}{\Lambda d^2} \right]$$
(47)

86